Ranked Candidate Fairness in Preference Aggregation

Preference Aggregation Domains & Applications

Social Choice & Information Retrieval.

Fair Preference Aggregation

Fair

Voters express preferences:

Fair collective decision: preference

How can voters make collective decisions over candidates in such a manner that is unbiased (fair) towards marginalized groups of candidates?

CANDIDATES		VOTER1	VOTER2	VOTER3	FAIR CONSENSUS RANKING		5	
Amy	Nick		Nick	Nick	Teddy		?	
Teddy	Mark		Mark	Mark	Mark		?	
Joe	Heidi		Amy	Joe	Joe		?	
Margaret	David		David	David	David		?	
			Heidi	Amy	Nick		?	
GROUPS		Teddy	Teddy	Heidi		?		
			Joe	Heidi	Amy		?	
			Margaret	Margaret	Margaret		?	

Effects of Interactive Fair Preference Aggregation [2]

Fair Exposure **Preference Aggregation** [3]

Introduction of Fair Exposure Kemeny Rank Aggregation.

Fair-Exp KAP: Find ranking r such that

1 *Exposure* $Ratio(r) \ge \gamma$

Candidate fairness sensitive to position bias. Using fairness of exposure from Singh et al. [4].

2 Maximize *Consensus Accuracy*(*r* | *prefs*)

Combines and maximizes preference representation. Using Kendall-tau (Kemeny) distance.

Introduce two fairness-tunable methods

1. Unbiased (fair) decisions for ranked candidates 2. Represent voter preferences as much as possible

Intersectional Fair Preference Aggregation [1]

Pairwise fair ranking metrics for multi-group attributes and intersectional groups.

MANI-RANK problem - Multi-attribute and intersectional fair consensus rankings.

Design PFair-Kemeny to solve MANI-RANK.

MANI-RANK fairness:

FairFuse interactive consensus ranking system.

We compare two visualization systems for fair consensus ranking, with task-based evaluation results highlighting the value and challenges of visualizing fairness metrics & algorithms.

airFuse	କ ୬	(ARF: 0.32)
air Consensus Generation Irress Threshold: 0.74	rate Fair Rank	
Similarity View	rotestad	Visualizations supporting fairness metrics and consen representation
TASKS	Guide	Lance Ramsey
Question 2 Which race groups are over advantaged Math ranking? (Please select all that app Asian Black White Native Pacific Islander	l in the ly)	Emilee Larsen

EPIK (Exposure Parity in Kemeny) & EPIRA (Exposure Parity in Rank Aggregation).

Experimentally find while Kemeny is fair in certain instances only EPIK is always fair.

Voter agreement

Methods with alternate fairness goals can introduce unfairness (disparate exposure).

Datasat	Matria	KEMENY	EPIK	EPIRA	PFAIR-KEM	RAPF	PRE-FE
Dataset	Metric		$\gamma = .95$	$\gamma = .95$	$\delta = .1$		$\gamma = .95$
	consensus accuracy (CA)	0.7536	0.6897	0.6714	0.7456	0.7190	0.7536
ACH 2002	group A avg. exposure	0.4343	0.4796	0.4680	0.4305	0.4329	0.4343
AGH 2005	group B avg. exposure	0.5496	0.4590	0.4821	0.5572	0.5524	0.5496
	exposure ratio (ER)	0.7902	0.9572	0.9707	0.7725	0.7836	0.7902

Paper includes 6 additional datasets

Work in Progress

How can we combine *incomplete voter* preferences into a suitable consensus mitigating both discriminatory bias in voter rankings and in the selection of who is ranked?

Intersectional Fairness only arises when all (attribute & intersectional groups) considered.

Legend

References

[1] Cachel, Kathleen, Elke A. Rundensteiner and Lane Harrison. "MANI-Rank: Multiple Attribute and Intersectional Group Fairness for Consensus Ranking." IEEE ICDE (2022). [2] Shrestha, Hilson, Kathleen Cachel, Mallak Alkhathlan, Elke A. Rundensteiner and Lane Harrison. "Help or Hinder? Evaluating the Impact of Fairness Metrics and Algorithms in Visualizations for Consensus Ranking." ACM FAccT(2023). [3] Cachel, Kathleen and Elke A. Rundensteiner. "Fairer Together: Mitigating Disparate Exposure in Kemeny Rank Aggregation." Proceedings of the 2023 ACM FAccT (2023). [4] Singh, Ashudeep and Thorsten Joachims. "Fairness of Exposure in Rankings." ACM SIGKDD (2018).

Good visualizations can help users navigate complexity.

Visually displaying metrics can lead to an increase credence in and over-reliance of fairness metrics.

Acknowledgements

Thank you to my Dissertation Committee: Elke Rundensteiner, Lane Harrison, Andrew Trapp, and Nick Mattei.

Great WPI Collaborators: Hilson Shrestha and Mallak Alkhathlan.

NSF #2007932

How can we combine voter preferences, expressed as rankings and ratings of candidates, into a fair consensus ranking?

Learn More

