Ranked Candidate Fairness

In Preference Aggregation

Preference Aggregation
Domains & Applications

Social Choice & Information Retrieval.

Awards Meta-search &
Group
Recommendation

Fair Preference Aggregation

Voters express Fair Fair collective
preferences: preference decision:
aggregation:

1. Unbiased (fair) decisions for ranked candidates
2. Represent voter preferences as much as possible

Intersectional Fair
Preference Aggregation [i;

Pairwise fair ranking metrics for multi-group
attributes and intersectional groups.

MANI-RANK problem - Multi-attribute and
intersectional fair consensus rankings.

Design PFair-Kemeny to solve MANI-RANK.

MANI-RANK fairness:

multi-group pairwise
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Committee Rankings

Intersectional Fairness only arises when all
(attribute & intersectional groups) considered.
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How can voters make collective
decisions over candidates in
such a manner that is unbiased
(fair) towards marginalized
groups of candidates?
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Effects of Interactive Fair
Preference Aggregation 2]
FairFuse interactive consensus ranking system.
We compare two visualization systems for fair
consensus ranking, with task-based evaluation

results highlighting the value and challenges of
visualizing fairness metrics & algorithms.
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Good visualizations can help users navigate
complexity.

Visually displaying metrics can lead to an
increase credence in and over-reliance of
fairness metrics.
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Fair Exposure
Preference Aggregation [s;

Introduction of Fair Exposure Kemeny Rank
Aggregation.

Fair-Exp KAP: Find ranking r such that
© Exposure Ratio(r) = vy

Candidate fairness sensitive to position bias.
Using fairness of exposure from Singh et al. [4].

© Maximize Consensus Accuracy(r | pref's)

Combines and maximizes preference representation.
Using Kendall-tau (Kemeny) distance.

Introduce two fairness-tunable methods
EPIK (Exposure Parity in Kemeny) & EPIRA
(Exposure Parity in Rank Aggregation).

Experimentally find while Kemeny is fair in
certain instances only EPIK is always fair.

Voter Voters agree and
fairness KEMENY are unbiased  EPIK
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Methods with alternate fairness goals can
introduce unfairness (disparate exposure).

KEMENY EPIK EPIRA  PFAIR-KEM  RAPF  PRE-FE

y=.95 y=.95 d=.1 Yy =.95

consensus accuracy (CA)  0.7536  0.6897 0.6714 0.7456 0.7190 0.7536
group A avg. exposure 0.4343  0.4796  0.4680 0.4305 0.4329 0.4343
group B avg. exposure 0.5496  0.4590 0.4821 0.5572 0.5524 0.5496
exposure ratio (ER) 0.7902 0.9572 0.9707 0.7725 0.7836¢  0.7902

Paper includes 6 additional datasets.

Dataset Metric
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Work in Progress

How can we combine incomplete voter
preferences into a suitable consensus
mitigating both discriminatory bias in voter
rankings and in the selection of who is
ranked?

How can we combine voter preferences,
expressed as rankings and ratings of
candidates, into a fair consensus ranking?
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